Characterization of arsenic-resistant endophytic bacteria from hyperaccumulators Pteris vittata and Pteris multifida.
نویسندگان
چکیده
We isolated and characterized As-resistant endophytic bacteria (AEB) from two arsenic hyperaccumulators. Their plant growth promoting traits and the relation between As tolerance and transformation were evaluated. A total of 41 and 33 AEB were isolated from Pteris vittata (PV) and Pteris multifida (PM) respectively. PV AEB represented 2genera while PM AEB comprised of 12 genera, with Bacillus sp. being the most dominant bacteria from both plants. All AEB had limited ability in solubilizing P and producing indole acetic acid (IAA) and siderophore. All isolates tolerated 10mM arsenate (As(V)), with PV isolates being more tolerant to As(V) and PM more tolerant to arsenite (As(III)). Bacterial arsenic tolerance was related to their ability in As(III) oxidation and As(V) reduction as well as their ability to retain As in the biomass to a varying extent. Though AEB showed limited plant growth promoting traits, they were important in arsenic tolerance and speciation in plants.
منابع مشابه
Spectroscopic Analysis of Arsenic Uptake in Pteris Ferns
Two arsenic-accumulating Pteris ferns (Pteris cretica mayii and Pteris multifida), along with a non-accumulating control fern (Nephrolepis exaltata) were grown in greenhouse conditions in clean sand spiked with 0, 20, 50, 100 and 200 ppm sodium arsenate. Spectral data were collected for each of five replicates prior to harvest at 4-week intervals. Fern samples were analyzed for total metals con...
متن کاملArsenic-resistant bacteria solubilized arsenic in the growth media and increased growth of arsenic hyperaccumulator Pteris vittata L.
The role of arsenic-resistant bacteria (ARB) in arsenic solubilization from growth media and growth enhancement of arsenic-hyperaccumulator Pteris vittata L. was examined. Seven ARB (tolerant to 10 mM arsenate) were isolated from the P. vittata rhizosphere and identified by 16S rRNA sequencing as Pseudomonas sp., Comamonas sp. and Stenotrophomonas sp. During 7-d hydroponic experiments, these ba...
متن کاملArsenic uptake, arsenite efflux and plant growth in hyperaccumulator Pteris vittata: Role of arsenic-resistant bacteria.
Bacteria-mediated arsenic (As) transformation and their impacts on As and P uptake and plant growth in As-hyperaccumulator Pteris vittata (PV) were investigated under sterile condition. All As-resistant bacteria (9 endophytic and 6 rhizospheric) were As-reducers except one As-oxidizer. After growing two months in media with 37.5 mg kg(-1) AsV, As concentrations in the fronds and roots were 3655...
متن کاملInfluence of arsenic stress on synthesis and localization of low-molecular-weight thiols in Pteris vittata.
The roles of low-molecular-weight thiols (LMWTs), such as glutathione and phytochelatins, in arsenic (As) tolerance and hyperaccumulation in Pteris vittata an As-hyperaccumulator fern remain to be better understood. This study aimed to thoroughly characterize LMWT synthesis in P. vittata to understand the roles played by LMWTs in As tolerance and hyperaccumulation. LMWT synthesis in P. vittata ...
متن کاملCharacterization of arsenic-resistant bacteria from the rhizosphere of arsenic hyperaccumulator Pteris vittata.
Arsenic hyperaccumulator fern Pteris vittata L. produces large amounts of root exudates that are hypothesized to solubilize arsenic and maintain a unique rhizosphere microbial community. Total heterotrophic counts on rich or defined media supplemented with up to 400 mmol/L of arsenate showed a diverse arsenate-resistant microbial community from the rhizosphere of P. vittata growing in arsenic-c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemosphere
دوره 113 شماره
صفحات -
تاریخ انتشار 2014